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ABSTRACT.This paper presents a 2D/3D finite volume (DDFV) method for solving heterogeneous
and anisotropic elliptic equations on very general unstructured meshes. The derived approxi-
mation scheme is proved to be well-posed, symetric and positive definite, due to a discrete Green
formulae. The method is used for the resolution of a problem arising in bio-mathematics: the
ECG (electrocardiogram) simulation, on 2D and 3D meshes obtained from segmented medical
images.
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1. Introduction

Based on the 2D DDFV method as defined e.g. in [DOM 05, AND 06], this pa-
per introduces a new 3D finite volume discretisation for a linear elliptic equation.
Consider a bounded domainΩ ⊂ Rd (d = 2, 3), a conductivity tensorG = G(x)
(symmetric positive definite and uniformly elliptic onΩ) that is anisotropic and also
heterogeneous and a functionf ∈ L2(Ω). We are looking for the variational solution
(ϕ ∈ H1(Ω)) to

div(G∇ϕ) = f (in Ω), G∇ϕ · n = 0 (on∂ΩN ), ϕ|∂Ω = 0 (on∂ΩD), (1)



where∂Ω = ∂ΩN ∪∂ΩD, andn is a unit normal on the boundary of∂Ω. Specifically,
in our model problemΩ is splitted into at least two parts,Ω1 andΩ2, and the tensor
G is discontinuous alongΓ = Ω̄1 ∩ Ω̄2. WhenG|Ωi

andΩi are smooth enough, the
variational solution to (1) is inH2(Ωi) (i = 1, 2) and verifies

ϕ|Ω1 = ϕ|Ω2 , G|Ω1∇ϕ|Ω1 · n = G|Ω2∇ϕ|Ω2 · n onΓ. (2)

Whenever∂ΩN = ∂Ω, uniqueness doesn’t hold anymore and there is then a solution
iff f has zero mean value, all solutions then differ up to a constant.

Our method provides a 3D symetric and positive-definite (main interest with re-
spect to [HER 07]) finite volume method for this problem, that performs well on ir-
regular meshes obtained from segmented medical images.

2. DDFV discretisation of the problem

2.1. Mesh definition and discrete data

We consider a triangulation/tetrahedrisationC of a bounded polygonal/polyhedral
subsetΩ ⊂ Rd. We denote byV andI the associated sets of vertices and interfaces
(denoted byσ). The elementsC ∈ C will be calledprimal cells. For equation (1) to
be correctly discretised, we naturally assume that the meshC “follows” the interface
Γ, and that the boundary interfacesσ ⊂ ∂Ω are dealt into two subsetsID, IN such
that∂ΩN = ∪σ∈INσ, ∂ΩD = ∪σ∈IDσ. The set of vertices of the interfacesσ ∈ ID

is denoted byVD ⊂ V. To every primal cellC is associated a centreK ∈ C (its
iso-barycentre in practice).

The cardinal ofC, V, VD, I are denoted byNC ,NV ,ND
V ,NI .

By CK one denotes the primal cellC of centreK. To any interfaceσ ∈ I is
associated a centreYσ ∈ σ (also its iso-barycentre in practice), also simply denoted
Y . Every internal interfaceσ ∈ I is the boundary between two primal cellsC1 andC2.
This is denoted byσ = C1|C2. Any geometrical element (of dimension0 < m ≤ d)
has a positivem-dimensional measure denoted by| · | (like |σ|, |C|, |Ω|, etc).

To every vertexA ∈ V is associated adual cellPA. Consider the subsetIA ⊂ I
of all the interfaces havingA as a vertex. To everyσ ∈ IA is associated a geometrical
elementPA,σ. The dual cellPA is given byPA = ∪σ∈IA

PA,σ.

The elementsPA,σ are defined as follows (see figure 1). Letσ = CK |CL be an
internal interface and letY beσ’s centre. In dimension 2,PA,σ is the quadrilateral
AKY L. In dimension 3, letB andC be the two other vertices ofσ (σ = ABC). Then
PA,σ is the reunion of the two pyramids having the same quadrilateral baseABY C
andK, L for apex: PA,σ = ABY CK ∪ ABY CL. That definition has obvious
extension to the caseσ ⊂ ∂Ω (simply drop one of the pyramid).
REMARK. — In dimension 2 the (interiors of the) dual cells are disjoints and recover
the whole domain, therefore

∑
A∈V |PA| = |Ω|. Whereas in dimension 3 the dual
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Figure 1. Dual cells and Diamond cells

cells are no more disjoints, ifA andB are two vertices of the same interfaceσ, PA,σ∩
PB,σ 6= ∅. Actually the dual cells now recover exactly twice the whole domain, so
that

∑
A∈V |PA| = 2|Ω|.

To every interfaceσ ∈ I is associated onediamond cellDσ. For an internal interface
σ = CK |CL, it is defined asDσ = Dσ,K ∪ Dσ,L whereDσ,K , Dσ,L are the two
triangles/pyramids with baseσ and apexK andL respectively, as depicted on figure
1. In the case of a boundary interfaceσ ⊂ ∂Ω, Dσ is a simple triangle/pyramid,
Dσ = Dσ,K . TheDσ,K will be called sub-diamond cells.

Hence the DDFV unknows belongs to the spaceXh = RNC × RNV . Its elements
φh = ((φK)K∈C , (φA)A∈V) are used to define pairs of piecewise constant functions
φh = (φCh, φ

V
h ) with φCh(x) =

∑
K∈C φK1CK

(x) andφVh (x) =
∑

A∈V φA1PA
(x)

(1X is caracteristic function of a subsetX ⊂ Ω).

The discret gradient of the DDFV unknown functions is defined on each side
(Dσ,K ,Dσ,L) of a diamond cell, and then belongs to the spaceQh = (R2)(d+1)NC . Its
elements areqh = (qσ,K)K∈C,σ∈δK with eachqσ,K in R2. They also define piecewise
constant vector valued functionsqh(x) =

∑
K∈C

∑
σ∈δK qσ,K1Dσ,K

(x).

The vector spacesQh andXh are equipped with the inner products

(ph, qh)Qh
=

∫
Ω

ph(x) · qh(x)dx =
∑
K

∑
σ∈δK

pσ,K · qσ,K |Dσ,K |, (3)

(φh, ψh)Xh
=

1
d

(∫
Ω

φCh(x)ψCh(x)dx+
∫

Ω

φVh (x)ψVh (x)dx
)

(4)

=
1
d

(∑
K

φKψK |K|+
∑
A

φAψA|PA|

)
(5)

for ph, qh ∈ Qh andφh, ψh ∈ Xh. The scaling1/d appears because
∑

K |K| = |Ω|
and

∑
A |PA| = (d− 1)|Ω| as seen before.
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Now, consider a discrete diffusion tensor, piecewise constant on the half diamond
cellsDσ,K , denoted byGh = (Gσ,K)K∈C,σ∈δK . We define the spaceQ(C)

h as the
subspace of the elementsqh ∈ Qh that verify theconservativity condition

∀σ ∈ I such thatσ = CK |CL, Gσ,Kqσ,K · nσ = Gσ,Lqσ,L · nσ, (6)

∀σ ∈ IN , Gσ,Kqσ,K · nσ = 0. (7)

REMARK. — In the above definitions, there are one to one cannonical mappings from
the spacesQC andXC describingdegrees of freedom(DOF) and the functions spaces
of qh andφh, so that the same notations can be used for vectors of DOF and functions.
The DDFV formulation is based on the two finite volumes schemes on the primal
and dual cells, with unknownsφCh andφVh . The systems of equations onφCh andφVh
are globally coupled through the calculation of the fluxes that are based on gradient
functions inQ(C)

h depending on both unknowns. The two systems decouples iff the
meshC is admissibleas stated in [EYM 00]. Although this formulation uses some
notations from the mimetic finite differences method (MFD), the scheme presented
here doesn’t belong to the category of MFD, for instance as analysed in [BRE 05].

2.2. The discrete operators and the Green formulae

The discrete divergence divh is a linear mapping fromQ(C)
h to Xh defined for

qh = (qσ,K)K∈C,σ∈δK by divhqh = ((divKqh)K∈C , (divAqh)A∈V) with

divKqh =
1

|CK |

∫
∂CK

qh(x) · n∂CK
ds(x), (8)

divAqh =
1

|PA|

∫
∂PA

qh(x) · n∂PA
d(x), (9)

wheren∂E is the outward unit normal on the boundary of the polygonal/polyhedral
elementE. That definition makes sense because of the conservativity condition (6).

The discrete gradient∇h must be defined in view of the conservativity condi-
tion (6). Therefore, auxiliary variables(φYσ )σ∈I\ID (to be defined by (6), (7)) are
used, together with Dirichlet boundary values(φYσ

)σ∈ID = 0. Using these vari-
ables, thediscrete gradient∇h is the linear mapping fromXh to Q(C)

h defined for
φh = ((φK)K , (φA)A) by∇hφh = (∇σ,Kφh)K∈C,σ∈δK with

∇σ,Kφh =
1

|Dσ,K |

∫
Dσ,K

∇φ(P1)
σ,K (x)dx, (10)

whereφ(P1)
σ,K is the function piecewise affine and continuous uniquely defined onDσ,K

by its vertex valuesφK , φA, φB (andφC in 3D) andφY using the triangulation (tetra-
hedridation in 3D) given byAKY andBKY (ABKY , BCKY , CAKY in 3D –
σ = ABC).
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Proposition 2.1 GivenK ∈ C andσ ∈ δK, for d = 3 (assuming thatσ = ABC
such thatdet(B −A,C −A, xK −A) > 0) considerNσK = 1

2 (B −A) ∧ (C −A),
NA = 1

2 (Y−A)∧(xK−Y ),NB = 1
2 (Y−B)∧(xK−B),NC = 1

2 (Y−C)∧(xK−C);
then we have

∇σ,Kφ =
1
3

1
|Dσ,K |

((φK − φY )NσK + (φB − φC)NA

+(φC − φA)NB + (φA − φB)NA) .

If d = 2, and withNσK = (B − A)⊥, NAB = (xK − Y )⊥ (·⊥ denotes the rotation
of angle+π/2), withσ = AB such thatdet(B −A, xK −A) > 0, we have

∇σ,Kφ =
1
2

1
|Dσ,K |

((φK − φY )NσK + (φB − φA)NAB) .

Proof. This is a simple computation (see figure 1 for the notations).
REMARK. — In proposition 2.1 the values ofφY can be easily expressed in terms of
only φK , φA, φB , φC as solutions to the scalar equations (6) or (7).

The previously defined discrete operators fulfil a duality property calleddiscrete
Green formulaby analogy with the continuous case.

Proposition 2.2 Consider a discrete tensorGh = (Gσ,K)K∈C,σ∈δK . For anyφh ∈
Xh such thatφA = 0 for all A ∈ VD andqh ∈ Q(C)

h , we have

(divhqh, φh)Xh
+ (qh,∇hφh)Qh

= 0. (11)

Proof. It is a straightforward computation based on proposition 2.1 and on (3)-(9).
REMARK. — A similar equality holds in the general non homogeneous case, with
boundary terms on the right hand side, assuming the discretisation accounts for the
boundary conditions.

2.3. The problem discretisation

Once the diffusion tensorG(x) has been discretized, for instance with

∀K ∈ C, ∀σ ∈ δK, Gσ,K =
1

|Dσ,K |

∫
Dσ,K

G(x)dx,

solving (1) with the DDFV finite volume method consist in looking for the unknown
φh = (φCh, φ

V
h ) ∈ Xh such thatφA = 0 for anyA ∈ VD and

−divhGh∇hφh = fh in Xh, (12)
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with fh = ((fK)K , (fA)A) ∈ Xh defined by

∀K ∈ C, fK =
1

|CK |

∫
CK

f(x)dx, ∀A ∈ V, fA =
1

|PA|

∫
PA

f(x)dx. (13)

REMARK. — From (8), (9) and (13), it can be seen that (12) is a discretisation of the
integral equation−

∫
∂V

G∇φ · nV dσ =
∫

V
f on the finite volumesV = K or A,

using fluxes based on the gradient∇hφh ∈ Q(C)
h that areconservative with respect to

Gh as expressed by (6).
Equation (12) is a linear system ofNC +NV −ND

V equations withNC +NV −ND
V

unknowns. As a consequence of proposition 2.2 we have the

Proposition 2.3 The linear system(12) is symetric and positive with respect to the
scalar product(·, ·)Xh

:

(−divhGh∇hφh, φh)Xh
≥ α‖∇hφh‖2

L2(Ω),

whereα > 0 is the constant of ellipticity ofG(x). The discrete problem has a unique
solution ifID 6= ∅ (mixed Dirichlet and Neumann).

Proof. The proof is deduced from a reformulation of summations appearing in the
inner products.

3. Application

The bidomain model (seee.g. [KEE 98]) describes the electrical activity of the
heart inside the Torso. In our application, the heart and torso are modeled by a 2D
slice of a segmented MRI image (figure 2). The region separated by dark lines on
figure 2(middle) are myocardium (domainH), ventricular cavities, lungs and torso
(domainT = Ω\H). The model inside the myocardium involves two compartments:
the intra/extra cellular mediums, and models a trans-membrane potentialv = ϕi − ϕ,
difference between the intra/extra cellular potentials respectively. The extracellular
potentialφ further extends inside the cavities and outside to the whole torso. At each
time step, this extended potential is at electrostatic equilibrium. Its measure at the
surface of the torso is the electrocardiograms (ECG).

For sake of simplicity, themodified monodomainmodel (see [CLE 04]) is used:
v(x, t) is given directly as the solution of a reaction diffusion system involving a
second variablew(x, t) ∈ Rm that describes the cells membrane activity (m is up to
20) using stiff differential equations. It is used to simulate the normal propagation of
depolarization and repolarization wave fronts (v passing from a rest value to a plateau
value and back to its rest value). It reads inH,

A0

(
C0
∂v

∂t
+ Iion(v,w)

)
= div(G1∇v) + Iapp(x, t),

∂w
∂t

= g(v,w), (14)
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while the electrostatic balance equation onΩ = H ∪ T is

−div(G∇φ(t)) = [div(G3∇v(t))]1H (15)

The dataA0 andC0 are constants scalars, the tensorG1 = G1(x) is non constant and
anisotropic,Iion, g are reaction terms,Iapp is an externally applied current that acti-
vates the system and in equation (15),G = G(x) andG3 = G3(x) are non constant
tensors. The microscopic orientation of the muscle fibers inside the myocardium is

Figure 2. (left) Simulation ofv: isochrons (ms) for the excitation wave on a 2D ven-
tricles slice mesh coming from MRI segmented images, 485000 degrees of freedom.
(middle) Computation ofϕ at timet = 50ms. The four domains are separated with
black lines (ventricles, ventricles cavities, lungs and torso remaining). (right) Simu-
lated ECG for two leads (V 1 andV 2) located on the body surface.

represented in the anisotropic diffusion tensors,G1(x) (in eq. (14)) andG2(x),G3(x)
(in eq. (15)). They all have the formGi(x) = P−1(x)DiP (x) (i = 1, 2, 3) where
Di is diagonal, representing longitudinal and transverse conductivities, andP (x) is a
change of basis matrix from the Frenet basis attached to the fibre direction at pointx.

At last, the global conductivity matrixG = G(x) is used to take into account the
difference of conductivity between the lungs, ventricular cavities, etc.

G(x) =


G2(x) for x ∈ H,
Gcavities in the ventricular cavities,

Glung in the lungs,

G0 otherwise.

(16)

A homogeneous Neumann condition is attached to eq. (15) on the boundary∂Ω, to
express that no current flow out of the torso.

Our main problem is to solve eq. (15), that is exactly of the form (1) with a
discontinuous and anisotropic diffusion tensorG(x) given in (16). The right-hand
side is given by the solution to (14), previously computed using the DDFV method
and explicit time-integration.

It is numerically difficult because a fine mesh and a small time step are needed to
account for the dynamics of the reaction-diffusion system (14). Our segmented 2D
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data counts 600 000 degrees of freedom (485 000 inH). Furthermore we solve an
homogeneous Neumann problem and the discrete matrix for (15) is ill-conditionned.
A GMRes solver with SSOR preconditionning has been found to perform reasonably
for this problem. The potentialφ is computed with a coarser time-step of 1 ms. On a
whole cardiac cycle (' 600 ms), 600 computations (linear system solutions) are thus
performed.

The 3D version of the code is in progress. Yet it is possible to perform 3D sim-
ulations considering only the isolated heart. The example given below shows the
evolution ofVm inside the ventricles on a 49611 thetrahedra mesh, as computed by
the 3D DDFV method.

Figure 3. Example of 3D computation (isolated heart) - Evolution ofVm.
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