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ABSTRACTT his paper presents a 2D/3D finite volume (DDFV) method for solving heterogeneous
and anisotropic elliptic equations on very general unstructured meshes. The derived approxi-
mation scheme is proved to be well-posed, symetric and positive definite, due to a discrete Green
formulae. The method is used for the resolution of a problem arising in bio-mathematics: the
ECG (electrocardiogram) simulation, on 2D and 3D meshes obtained from segmented medical
images.
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1. Introduction

Based on the 2D DDFV method as defined e.g. in [DOM 05, AND 06], this pa-
per introduces a new 3D finite volume discretisation for a linear elliptic equation.
Consider a bounded domafh C R? (d = 2,3), a conductivity tensot; = G(z)
(symmetric positive definite and uniformly elliptic dp) that is anisotropic and also
heterogeneous and a functigre L?((2). We are looking for the variational solution
(b€ H(Q))to

div(GVy) = f (inQ), GVe-n=00nd"), ¢psq=0(0noQ"), (1)



wheredQ = 9QN UONP, andn is a unit normal on the boundary 8f). Specifically,
in our model problenf) is splitted into at least two part®; and(,, and the tensor
G is discontinuous along = Q; N Q5. WhenG g, and(); are smooth enough, the
variational solution to (1) is iff%($;) (i = 1,2) and verifies

Pl = P92 G‘legO‘Ql ‘n = G‘QZV(MQQ -n onl. (2)

WhenevenQ = 09, uniqueness doesn't hold anymore and there is then a solution
iff f has zero mean value, all solutions then differ up to a constant.

Our method provides a 3D symetric and positive-definite (main interest with re-
spect to [HER 07]) finite volume method for this problem, that performs well on ir-
regular meshes obtained from segmented medical images.

2. DDFYV discretisation of the problem
2.1. Mesh definition and discrete data

We consider a triangulation/tetrahedrisat®nf a bounded polygonal/polyhedral
subset) ¢ R%. We denote by andZ the associated sets of vertices and interfaces
(denoted by). The elementg’ € C will be calledprimal cells For equation (1) to
be correctly discretised, we naturally assume that the riefbllows” the interface
I', and that the boundary interfacesc 052 are dealt into two subse®”, ZV such
thatoQN = U, czvo, 0P = U,czpo. The set of vertices of the interfacesc 77
is denoted byw? C V. To every primal cellC is associated a centi§ € C (its
iso-barycentre in practice).

The cardinal of’, V, VP, T are denoted byV¢, Ny, N5, N7.

By Cx one denotes the primal cell of centre K. To any interfacer € 7 is
associated a centié, € o (also its iso-barycentre in practice), also simply denoted
Y. Every internal interface € 7 is the boundary between two primal cells andCs.
This is denoted by = C;|C5. Any geometrical element (of dimension< m < d)
has a positiven-dimensional measure denoted by (like |o|, |C], ||, etc).

To every vertexA € V is associated dual cell P4. Consider the subs&y C 7
of all the interfaces having as a vertex. To every € 74 is associated a geometrical
elementP, . The dual cellP4 is given byPy = Uyez, Pa.o-

The element$, , are defined as follows (see figure 1). let= C|Cy, be an
internal interface and let” be o’s centre. In dimension 2P, . is the quadrilateral
AKY L. Indimension 3, le3 andC' be the two other vertices of (¢ = ABC). Then
P4, is the reunion of the two pyramids having the same quadrilateral ha8eC
and K, L for apex: P4, = ABYCK U ABYCL. That definition has obvious
extension to the case C 992 (simply drop one of the pyramid).

REMARK. — In dimension 2 the (interiors of the) dual cells are disjoints and recover
the whole domain, therefor®’ ,,, [Pa| = |Q2]. Whereas in dimension 3 the dual



oc=K|L

(a) Pa,» (dark grey) (b) Pa,» in 3D (¢c) D, in3D
and P4 (grey) in 2D

Figure 1. Dual cells and Diamond cells

cells are no more disjoints, A and B are two vertices of the same interfaceP, , N
P, # 0. Actually the dual cells now recover exactly twice the whole domain, so
that " , .\, [Pal = 2/€Y].

To every interface € 7 is associated ongiamond cellD,,. For an internal interface

o = Ck|CyL, it is defined asD, = D, x U D, whereD, g, D, 1, are the two
triangles/pyramids with baseand apexi and L respectively, as depicted on figure
1. In the case of a boundary interfageC 092, D, is a simple triangle/pyramid,
D, = Dy k. The D, g will be called sub-diamond cells.

Hence the DDFV unknows belongs to the spage= RN¢ x RMv. Its elements
on = ((¢r)Kxec, (Pa)acy) are used to define pairs of piecewise constant functions

O = (0, 0y) With ¢() = 3 e drlog (v) and ¢ (x) = 30 acy, Palps (@)
(1x is caracteristic function of a subs&t C ).

The discret gradient of the DDFV unknown functions is defined on each side
(Do.x, D,.1) of a diamond cell, and then belongs to the sp@ge= (R?)(@+1Ne |ts
elements are;, = (g0, k) kec.occsx With eachy, - in R2. They also define piecewise
constant vector valued functions(z) = > xce > oesi 9o,k 1D, 1 (T).

The vector spaceQ;, andX, are equipped with the inner products

(Pr an)q, = /Qph(x) cqn(@)dz =" > pox - dok|Doxl,  (3)

K ocedK
onindx, = 3 ([ S [ deom@a) @

2 (Z drVK| K| +Z¢A¢A|PA|> ®)
K A

for pn, qn € Qp andey, ¥y, € Xy,. The scalingl/d appears because ;. | K| = |9
and)_ , |Pa| = (d — 1)|©2| as seen before.



Now, consider a discrete diffusion tensor, piecewise constant on the half diamond

cells D, , denoted byG), = (Go k)rec,oesix- We define the spaoQElC) as the
subspace of the elemenjs € Qy, that verify theconservativity condition

Vo € Z such that = CK|CL, GU’K(]J’K ‘N, = GJ’LC]G’L ‘g, (6)
Vo € INa GU,KqU,K ‘n, =0. (7)

REMARK. — In the above definitions, there are one to one cannonical mappings from
the space€). andX. describingdegrees of freedofoOF) and the functions spaces

of g, and¢y, so that the same notations can be used for vectors of DOF and functions.
The DDFV formulation is based on the two finite volumes schemes on the primal
and dual cells, with unknowns; and¢). The systems of equations @f§ and )

are globally coupled through the calculation of the fluxes that are based on gradient
functions inQZC) depending on both unknowns. The two systems decouples iff the
meshC is admissibleas stated in [EYM 00]. Although this formulation uses some
notations from the mimetic finite differences method (MFD), the scheme presented
here doesn't belong to the category of MFD, for instance as analysed in [BRE 05].

2.2. The discrete operators and the Green formulae

The discrete divergence djivis a linear mapping fronQéC) to X, defined for
an = (Go,x)KeC,oesk DY diviagn, = ((diVian) kec, (diVagn) acy) with

. 1
divi gy, @ o qn(x) - nyco, ds(x), (8)
. 1
divag, = 75— qn(z) -mgp,d(z), ()]
|Pal Jop,

wherengg is the outward unit normal on the boundary of the polygonal/polyhedral
elementE. That definition makes sense because of the conservativity condition (6).

The discrete gradientV;, must be defined in view of the conservativity condi-
tion (6). Therefore, auxiliary variablggy, ),c7\z» (to be defined by (6), (7)) are
used, together with Dirichlet boundary valugsy, ),cz0 = 0. Using these vari-
ables, thediscrete gradientV,, is the linear mapping fronX,, to QELC) defined for
on = (9K )i, (9a)a) BY Vion = (Vo k) kec,oesx With

1
Vo kn = / VoD (w)da, (10)
7 Dol Jp, o 7

where¢ff}? is the function piecewise affine and continuous uniquely defined op
by its vertex values i, ¢4, ¢ (and¢c in 3D) andgy using the triangulation (tetra-
hedridation in 3D) given bAKY and BKY (ABKY, BCKY, CAKY in 3D —
o = ABC).



Proposition 2.1 GivenK € C ando € §K, for d = 3 (assuming that = ABC
such thatdet(B — A,C — A,z — A) > 0) considerN, g = (B — A) A (C — A),
Na=3i(Y-A)Nzr-Y),Ng = 3(Y-B)A(xzxk—B),Nc = 2(Y —C)A\(zx—C);
then we have

1 1

VU,K¢: g‘D0K|

)

((¢x — ¢y )Nox + (0B — 0c)Na

+(pc — da)Np + (0a — ¢B)Na) .

If d =2, and withN, r = (B — A)*, Nap = (zx — Y)* (-+ denotes the rotation
of angle+/2), witho = AB such thatdet(B — A, zx — A) > 0, we have

1 1

Vokd = 2Dy x| ((¢x — v )Nok + (¢ — d4)NaB) -

Proof. This is a simple computation (see figure 1 for the notatios).
REMARK. — In proposition 2.1 the values gfy can be easily expressed in terms of
only ¢, 04, ¢, dc as solutions to the scalar equations (6) or (7).

The previously defined discrete operators fulfil a duality property caliscrete
Green formulaby analogy with the continuous case.

Proposition 2.2 Consider a discrete tens@¥;, = (Go. k) kec,0esk- FOr any gy, €
X, such thatp4, = 0forall A € VP andg, € Qgc), we have

(divign, on)x, + (an: Vadn)q, =0 11)

Proof. ltis a straightforward computation based on proposition 2.1 and on (3)1(9).
REMARK. — A similar equality holds in the general non homogeneous case, with
boundary terms on the right hand side, assuming the discretisation accounts for the
boundary conditions.

2.3. The problem discretisation

Once the diffusion tensdk (x) has been discretized, for instance with
1
VK eC,VoedK, Gorx= 7/ G(z)dz,
|D0'7K| DU,K

solving (1) with the DDFV finite volume method consist in looking for the unknown
on = (6%, 6Y) € X), such thatp, = 0 forany A € VP and

—div,Gr,Vpon = frn In Xy, (12)



with fr, = ((fx) Kk, (fa)a) € Xy, defined by

1 1
VK €C, fK:m ; f(x)dx, VA€V, fA:m ., f(z)dx. (13)

REMARK. — From (8), (9) and (13), it can be seen that (12) is a discretisation of the
integral equation- [,,, GV¢ - nydo = [, f on the finite volumed” = K or A,

using fluxes based on the gradi@nt¢;, € Q%C) that areconservative with respect to
G, as expressed by (6).

Equation (12) is a linear system 8k + Ny, — NJJ equations withNe + Ny — N
unknowns. As a consequence of proposition 2.2 we have the

Proposition 2.3 The linear systenf12) is symetric and positive with respect to the
scalar product(-, -)x,

(—divaGrV nn, ¢n) x, = Al Vronlliz (o),

wherea > 0 is the constant of ellipticity off(x). The discrete problem has a unique
solution ifZ” # () (mixed Dirichlet and Neumann).

Proof. The proof is deduced from a reformulation of summations appearing in the
inner products.i

3. Application

The bidomain model (see.g. [KEE 98]) describes the electrical activity of the
heart inside the Torso. In our application, the heart and torso are modeled by a 2D
slice of a segmented MRI image (figure 2). The region separated by dark lines on
figure 2(middle) are myocardium (domakh), ventricular cavities, lungs and torso
(domainT = Q\ H). The model inside the myocardium involves two compartments:
the intra/extra cellular mediums, and models a trans-membrane potestial, — ¢,
difference between the intra/extra cellular potentials respectively. The extracellular
potentialy further extends inside the cavities and outside to the whole torso. At each
time step, this extended potential is at electrostatic equilibrium. Its measure at the
surface of the torso is the electrocardiograms (ECG).

For sake of simplicity, thenodified monodomaimodel (see [CLE 04]) is used:
v(x,t) is given directly as the solution of a reaction diffusion system involving a
second variablev(z,t) € R™ that describes the cells membrane activityié up to
20) using stiff differential equations. It is used to simulate the normal propagation of
depolarization and repolarization wave fronipg@ssing from a rest value to a plateau
value and back to its rest value). It readHn

Ap <C’0(a,;t} + Iion(v,w)> = div(G1Vv) + Lpp(z,t), aa—vtv =g(v,w), (14)



while the electrostatic balance equationfor= H U T is
—div(GVe(t)) = [div(GsVu(t))] 1x (15)

The datad, andC), are constants scalars, the tenS§gr= G (x) is non constant and
anisotropic,/;.,,, g are reaction termd,,,,, is an externally applied current that acti-
vates the system and in equation (18)= G(z) andG3 = G3(x) are non constant
tensors. The microscopic orientation of the muscle fibers inside the myocardium is

Figure 2. (left) Simulation ofv: isochrons (ms) for the excitation wave on a 2D ven-
tricles slice mesh coming from MRI segmented images, 485000 degrees of freedom.
(middle) Computation op at timet = 50ms. The four domains are separated with
black lines (ventricles, ventricles cavities, lungs and torso remaining). (right) Simu-
lated ECG for two leadsl(1 and V2) located on the body surface.

represented in the anisotropic diffusion tens6is(z) (in eq. (14)) andz2(x), G3(z)
(in eq. (15)). They all have the for@;(z) = P~(z)D;P(z) (i = 1,2,3) where
D, is diagonal, representing longitudinal and transverse conductivities? anyis a
change of basis matrix from the Frenet basis attached to the fibre direction at point

At last, the global conductivity matri& = G(z) is used to take into account the
difference of conductivity between the lungs, ventricular cavities, etc.

Go(x) forxz e H,

Glo) = G cavities in the ventricular cavities (16)
Gung  inthe lungs

Go otherwise

A homogeneous Neumann condition is attached to eq. (15) on the bourdatg
express that no current flow out of the torso.

Our main problem is to solve eq. (15), that is exactly of the form (1) with a
discontinuous and anisotropic diffusion tenggfz) given in (16). The right-hand
side is given by the solution to (14), previously computed using the DDFV method
and explicit time-integration.

It is numerically difficult because a fine mesh and a small time step are needed to
account for the dynamics of the reaction-diffusion system (14). Our segmented 2D



data counts 600 000 degrees of freedom (485 00 )n Furthermore we solve an
homogeneous Neumann problem and the discrete matrix for (15) is ill-conditionned.
A GMRes solver with SSOR preconditionning has been found to perform reasonably
for this problem. The potential is computed with a coarser time-step of 1 ms. On a
whole cardiac cycle+£ 600 ms), 600 computations (linear system solutions) are thus
performed.

The 3D version of the code is in progress. Yet it is possible to perform 3D sim-
ulations considering only the isolated heart. The example given below shows the
evolution ofV,,, inside the ventricles on a 49611 thetrahedra mesh, as computed by
the 3D DDFV method.

Figure 3. Example of 3D computation (isolated heart) - EvolutiorV/pf.
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