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Short Abstract: In the Zeckendorf numeration system natural numbers are represented as sums of Fibonacci

numbers. In base ϕ natural numbers are represented as sums of powers of the golden mean ϕ. Both

representations have digits 0 and 1, where the word 11 is not allowed. I will try to answer the following questions:

what are the words that can occur in the Zeckendorf representations, and what are those that occur in base ϕ

expansions? In which representations, c.q. expansions, of which natural numbers do they occur?



At the museum

Yaakov Agam: “The image needs to evolve, not exist”



Zeckendorf representations

Let F0 = 0, F1 = 1, F2 = 1, . . . be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written
uniquely as

N =
∞∑
i=0

diFi+2,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.

We write Z (N) = dL . . . d2d1d0.

Example Z (6) = 1001, since F5 = 5,F2 = 1.



Base phi expansions

Base phi expansions are also known as beta-expansions, with
β = (1 +

√
5)/2 =: ϕ, the golden mean.

A natural number N is written in base phi if N has the form

N =
∞∑

i=−∞
diϕ

i ,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.
Similarly to base 10 numbers, we write

β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR .

Example β(5) = 1000·1001, since ϕ3 + ϕ−1 + ϕ−4 = 5.



Zeckendorf and base phi

N Z (N) β(N)

1 1 1·
2 10 10 · 01
3 100 100 · 01
4 101 101 · 01
5 1000 1000 · 1001
6 1001 1010 · 0001
7 1010 10000 · 0001
8 10000 10001 · 0001
9 10001 10010 · 0101

10 10010 10100 · 0101
11 10100 10101 · 0101
12 10101 100000 · 101001
13 100000 100010 · 001001
14 100001 100100 · 001001
15 100010 100101 · 001001

Main differences:

a) Shift invariance for Z (·)
b) real numbers for β(·)



Zeckendorf and base phi, part 2

There is a paper which describes a two-tape automaton with

input: the Zeckendorf representation

output: the base phi expansion.

C. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci

representation to representation in base ϕ and a generalization. Int. J.

Algebra Comput. 9 (1999)



A sea of words
[001000001010·00001010010]
[001000010000·00001010010]
[001000010001·00001010010]
[001000010010·01001010010]
[001000010100·01001010010]
[001000010101·01001010010]
[001000100000·10100010010]
[001000100010·00100010010]
[001000100100·00100010010]
[001000100101·00100010010]
[001000101000·10000010010]
[001000101010·00000010010]
[001001000000·00000010010]
[001001000001·00000010010]
[001001000010·01000010010]
[001001000100·01000010010]

[001001000101·01000010010]



Sum of digits for Zeckendorf

For Z (N) = dL . . . d1d0, let sZ (N) := dL + · · ·+ d1 + d0 mod 2.

sZ = 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, . . .

Then sZ is a morphic sequence.

θZ := 1→ 12, 2→ 4, 3→ 1, 4→ 43,

λ := 1→ 0, 2→ 1, 3→ 0, 4→ 1.

x = 1244343 . . . with θZ (x) = x , then λ(x) = sZ .

J.-P. Allouche and J. Shallit, Automatic Sequences (2003), Examples 7.8.2 and
7.8.4. On 6 letters.

E. Ferrand, An analogue of the Thue-Morse sequence, The Electronic Journal
of Combinatorics (2007)



Complexity of the Zeckendorf fixed point

The Zeckendorf fixed point is the fixed point
xZ = 12443431431 . . . of the morphism
θZ := 1→ 12, 2→ 4, 3→ 1, 4→ 43.

Let p = (p(n)) be the subword complexity function of xZ .

We have p(1) = 4, p(2) = 10, p(3) = 16, p(4) = 22, p(5) = 28.

Let ff be the infinite word on the alphabet {6, 8} given by

ff = 686688666888 · · · = 6F28F26F38F36F48F4 . . . .

Conjecture 1 p(n + 5)− p(n + 4) = ff (n) for n = 1, 2 . . . .

S. Brlek, Enumeration of factors in the Thue–Morse word, Discrete Appl.

Math.(1989)



Complexity of Zeckendorf sum of digits mod 2

Let p = (p(n)) be the subword complexity function of sZ .

We have p(1) = 2, p(2) = 4, p(3) = 8, p(4) = 14, p(5) = 24.

Let xf be the infinite word on the alphabet {6, 8} given by

xf = 6686886666888 · · · = 6X28F26X38F36X48F4 . . . .

Here X2 = 2,X3 = 1,X4 = 4,X5 = 4, · · · :

Xn is the absolute value of the Euler characteristic of the Boolean
complex of the Coxeter group An :-)

Xn := Fn + (−1)n

Conjecture 2 p(n + 5)− p(n + 4) = xf (n) for n = 1, 2 . . . .



Sum of digits for base phi

For β(N) = dLdL−1 . . . d0·d−1 . . . dR+1dR , let

sβ(N) := dL + · · ·+ d0 + d−1 + · · ·+ dR mod 2.

sβ = 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .

Then sβ is a morphic sequence.

τ(1) = 12, τ(2) = 312, τ(3) = 47, τ(4) = 8312,
τ(5) = 56, τ(6) = 756, τ(7) = 83, τ(8) = 4756.

λ(1) = λ(3) = λ(6) = λ(8) = 0, λ(2) = λ(4) = λ(5) = λ(7) = 1.

t = 1231247123 . . . with τ(t) = t, then sβ = λ(t).

M.D., The sum of digits function of the base phi expansion of the natural

numbers, INTEGERS (2020)



Pseudo randomness

Let s2 be the Thue Morse sequence.

Michael Drmota, Christian Mauduit and Joël Rivat:

Theorem The sequence (s2(n2)) is a normal sequence.

Conjecture 3 The sequence (sZ (n2)) is a normal sequence.

Conjecture 4 The sequence (sβ(n2)) is a normal sequence.

M. Drmota, C. Mauduit, and J. Rivat, Normality along squares, J. Eur. Math.

Soc. (2019)



Beatty sequences

Beatty sequence: A(N) = bNαc for N ≥ 1, where α is a positive
real number.

Beatty observed: if B(N) := bNβc, with

1

α
+

1

β
= 1,

then (A(N)) and (B(N)) are complementary sequences.



The golden mean case: Wythoff sequences

Lower Wythoff sequence:

(A(N)) = (bNϕc) = (1, 3, 4, 6, 8, 9, 11, . . . ),

Upper Wythoff sequence:

(B(N)) = (bNϕ2c) = (2, 5, 7, 10, 13, 15, . . . ),

1

ϕ
+

1

ϕ2
= 1.



Compound Wythoff sequences

An important role is played by compositions of the two sequences
A and B , also known as compound Wythoff sequences.

As usual, we write these compositions as words over the monoid
generated by A,B. For example, the compound sequence AB is
given by

AB(N) = A(B(N)) N = 1, 2 . . . .



Generalized Beatty sequences

Let α be an irrational number larger than 1.

Generalized Beatty sequence V :

V (N) = pbNαc+ qN + r , N ≥ 1.

p, q and r integers, the parameters of V .

J.-P. Allouche and F.M. Dekking, Generalized Beatty sequences and

complementary triples, Moscow J. Comb. Number Th. (2019)



Generalized Beatty sequences, Part 2

Lemma Let V be a generalized Beatty sequence with parameters
(p, q, r), and α = ϕ. Then VA and VB are generalized Beatty
sequences with parameters

(pVA, qVA, rVA) = (p + q, p, r − p),

(pVB , qVB , rVB) = (2p + q, p + q, r).

Example The Wythoff sequence
(A(N)) = (bNϕc) = (1, 3, 4, 6, 8, 9, 11, 12, 14, . . . ),

is a GBS with parameters (1, 0, 0).
The iterated Wythoff sequence AA = (1, 4, 6, 9, 12, 14, 17, . . . ) is a
GBS with parameters (1, 1,−1).

J.-P. Allouche and F.M. Dekking, Generalized Beatty sequences and

complementary triples, Moscow J. Comb. Number Th. (2019)



Zeckendorf: technical detail

N in {0, . . . ,Fn − 1}: supplement with 0’s Z (N) V Z ∗(N).

For example, for n = 6, we have

N Z (N) Z ∗(N)

1 1 00001
2 10 00010
3 100 00100
4 101 00101
5 1000 01000
6 1001 01001
7 1010 01010
8 10000 10000

In the following, occurrences of a word w have to be interpreted in
the Z ∗-sense.



Zeckendorf structure

For any natural number m fix a word w = wm−1 . . .w0 of 0’s and
1’s.

We are interested in the numbers N with Z (N) = dL . . . d2d1d0(N)
such that

dm−1 . . . d0(N) = wm−1 . . .w0.

We write Rw for the sequence of occurrences of those N.

For example, R010 = (2, 7, 10, 15, 20, . . . ).

It turns out that the sequences Rw are always generalized Beatty
sequences, and almost always compound Wythoff sequences, which
we denote by Cw .



Some results from the literature

In a pioneering paper by Carlitz, Scoville and Hoggatt, we find that
for m ≥ 0

C102m+1 = Bm+1A, C102m = ABmA,

C00102m+1 = Bm+1AA, C0102m = ABmAA,

C10102m+1 = Bm+1AB, C10102m = ABmAB.

These are given in their Theorems 7 and 8.

L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Fibonacci representations, Fibonacci

Quart. (1972).



Key lemma

Lemma For any natural number m > 1 fix a word
w = wm−1 . . .w0 of 0’s and 1’s, with wm−1 = 0.

Let Cw be the Wythoff-coding of the sequence of occurrences of
the numbers N whose Z ∗-expansion ends with w . Then

C0w = CwA, C1w = CwB.

This would have been very useful to L. Carlitz, R. Scoville, V. E. Hoggatt,

Jr.,....



Zeckendorf: main result

Theorem For any natural number m fix a word w = wm−1 . . .w0

of 0’s and 1’s, containing no 11. Then—except if w = 1, or
w = 0m—the sequence Rw of occurrences of numbers N such that
the m lowest digits of the Zeckendorf expansion of N are equal to
w , i.e., dm−1 . . . d0 = w , is a compound Wythoff sequence Cw .

For all w :
Rw = FmA + Fm−1Id + γw if wm−1 = 0
Rw = Fm+1A + FmId + γw if wm−1 = 1

for some negative integer γw .

Exceptional cases: R1 = B − 1; R0m = Am − 1.



Zeckendorf blocks on the Fibonacci tree

(pVA, qVA, rVA) = (p + q, p, r − p),

(pVB , qVB , rVB) = (2p + q, p + q, r).



What about base phi expansions?

A natural number N is written in base phi if N has the form

N =
∞∑

i=−∞
diϕ

i ,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.

β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR .

β(N) = β+(N)·β−(N).

Treat β+(N) and β−(N) separately.



Base phi
N β(N) T (N)

1 1 C
2 10 · 01 A
3 100 · 01 B
4 101 · 01 C
5 1000 · 1001 D
6 1010 · 0001 A
7 10000 · 0001 B
8 10001 · 0001 C

9 10010 · 0101 A
10 10100 · 0101 B
11 10101 · 0101 C
12 100000 · 101001 D
13 100010 · 001001 A
14 100100 · 001001 B
15 100101 · 001001 C
16 101000 · 100001 D
17 101010 · 000001 A
18 1000000 · 000001 B
19 1000001 · 000001 C
20 1000010 · 010001 A

Coding:

T (N) = A iff d1d0·d−1(N) = 100,

T (N) = B iff d1d0·d−1(N) = 000,

T (N) = C iff d1d0·d−1(N) = 010,

T (N) = D iff d1d0·d−1(N) = 001.

Lemma:

d1d0·d−1(N) = 101 never occurs.



A,B,C,D,...

Let γ on the alphabet {A,B,C,D} be defined by:

γ(A) = AB, γ(B) = C, γ(C) = D, γ(D) = ABC.

Theorem The sequence (T (N))N≥2 is the unique fixed point of
the morphism γ.

Observe: γ(ABC) = ABCD, γ(D) = ABC.

M.D., Base phi representations and golden mean beta-expansions,

Fib. Quarterly 58 (2020)



Base phi and Lucas numbers

The Lucas numbers
(Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . ) :

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

From L2n = ϕ2n + ϕ−2n, and L2n+1 = L2n + L2n−1:

β(L2n) = 102n · 02n−11, β(L2n+1) = 1(01)n · (01)n.

Partition the natural numbers into Lucas intervals:

Λ2n := [L2n, L2n+1] and Λ2n+1 := [L2n+1 + 1, L2n+2 − 1].

Divide the interval Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] into three parts:

In := [L2n+1 + 1, L2n+1 + L2n−2 − 1],

Jn := [L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn := [L2n+1 + L2n−1 + 1, L2n+2 − 1].



Recursive Structure Theorem

Theorem

I For all n ≥ 1 and k = 1, . . . , L2n−1 one has
β(L2n + k) = β(L2n) + β(k) = 10 . . . 0β(k) 0 . . . 01.

II For all n ≥ 2 and k = 1, . . . , L2n−2 − 1 one has

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.



History of the Recursive Structure Theorem

E. Hart, On Using Patterns in the Beta-Expansions To Study
Fibonacci-Lucas Products, Fibonacci Quart. 36 (1998), 396–406.

E. Hart and L. Sanchis, On the occurrence of Fn in the Zeckendorf
decomposition of nFn, Fibonacci Quart. 37 (1999), 21–33.

G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of
αi in the α-expansions of the positive integers, Fibonacci Quart.
39 (2001), 123–137.

M.D. How to add two natural numbers in base phi. To appear in
Fib. Quarterly (2020).



Digit blocks w = dmdm−1 . . . d10

w = 0
Rw = −A+ 3 Id

w = 00
Rw = A+2Id
t 3A+Id+1

w = 000
Rw = 3A+Id+1
t 4A+3Id

w = 0000
Rw = 4A+3Id
t 7A+4Id+1

w = 1000
Rw = 4A+3Id−2

w = 100
Rw = 3A+Id−1

w = 0100
Rw = 3A+Id−1

w = 10
Rw = A+2Id−1

w = 010
Rw = A+2Id−1

w = 0010
Rw = 3A+Id−2

w = 1010
Rw = 4A+3Id−1



Digit blocks w = dmdm−1 . . . d11

w = 1
Rw = A+ 2Id+ 1

w = 01
Rw = A+2Id+1

w = 001
Rw = 4A+3Id+1

w = 0001
Rw = 4A+3Id+1

w = 00001
Rw = 11A+7Id+1

w = 10001
Rw = 7A+4Id−3

w = 1001
Rw = ∅

w = 101
Rw = 3A+Id

w = 0101
Rw = 3A+Id

w = 00101
Rw = 4A+3Id−3

w = 10101
Rw = 7A+4Id



The missing blocks

Theorem For any natural number m fix a word w of 0’s and 1’s,
containing no 11. Let w0 = 1. Then the sequence of occurrences
of numbers N such that the digits dm−1 . . . d0 of the base phi
expansion of N are equal to w , i.e.,

dm−1 . . . d0(N) = w ,

is a generalized Beatty sequence, with exception of the words w
with suffix 102m1, for m = 2, 3, . . . , which do not occur at all.

M.D., Work in progress (2020)



The end


