The structure of Zeckendorf representations and base φ expansions

Michel Dekking

One World Seminar on Combinatorics on Words $19\backslash 10 \backslash 2020$

Short Abstract: In the Zeckendorf numeration system natural numbers are represented as sums of Fibonacci numbers. In base φ natural numbers are represented as sums of powers of the golden mean φ . Both representations have digits 0 and 1, where the word 11 is not allowed. I will *try to* answer the following questions: what are the words that can occur in the Zeckendorf representations, and what are those that occur in base φ expansions? In which representations, c.q. expansions, of which natural numbers do they occur?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

At the museum

Yaakov Agam: "The image needs to evolve, not exist"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Zeckendorf representations

Let $F_0 = 0$, $F_1 = 1$, $F_2 = 1$,... be the Fibonacci numbers. Ignoring leading zeros, any natural number N can be written uniquely as

$$N=\sum_{i=0}^{\infty}d_iF_{i+2},$$

with digits $d_i = 0$ or 1, and where $d_i d_{i+1} = 11$ is not allowed. We write $Z(N) = d_L \dots d_2 d_1 d_0$.

Example Z(6) = 1001, since $F_5 = 5, F_2 = 1$.

Base phi expansions

Base phi expansions are also known as beta-expansions, with $\beta = (1 + \sqrt{5})/2 =: \varphi$, the golden mean.

A natural number N is written in base phi if N has the form

$$\mathsf{N}=\sum_{i=-\infty}^{\infty}d_i\varphi^i,$$

with digits $d_i = 0$ or 1, and where $d_i d_{i+1} = 11$ is not allowed. Similarly to base 10 numbers, we write

$$\beta(N) = d_L d_{L-1} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{R+1} d_R.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example $\beta(5) = 1000 \cdot 1001$, since $\varphi^3 + \varphi^{-1} + \varphi^{-4} = 5$.

Zeckendorf and base phi

N	Z(N)	$\beta(N)$
1	1	1.
2	10	$10 \cdot 01$
3	100	$100 \cdot 01$
4	101	$101 \cdot 01$
5	1000	$1000 \cdot 1001$
6	1001	$1010 \cdot 0001$
7	1010	$10000 \cdot 0001$
8	10000	$10001 \cdot 0001$
9	10001	$\underline{10010}\cdot0101$
10	10010	$10100 \cdot 0101$
11	101 00	$10101 \cdot 0101$
12	10101	$100000 \cdot 101001$
13	100000	$100010 \cdot 001001$
14	100001	$100100 \cdot 001001$
15	100010	$100101 \cdot 001001$

Main differences: a) Shift invariance for $Z(\cdot)$ b) real numbers for $\beta(\cdot)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Zeckendorf and base phi, part 2

There is a paper which describes a two-tape automaton with input: the Zeckendorf representation output: the base phi expansion.

C. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base φ and a generalization. Int. J. Algebra Comput. 9 (1999)

A sea of words

[00100001010.00001010010][001000010000.00001010010][001000010001.00001010010] [001000010010.01001010010][001000010100.01001010010][001000010101.01001010010] [00100010000.10100010010][001000100010.00100010010][001000100100.00100010010][001000100101.00100010010] [001000101000.10000010010] [001000101010.00000010010][00100100000.0000010010][001001000001.00000010010][001001000010.01000010010][001001000100.01000010010][001001000101.01000010010]

Sum of digits for Zeckendorf

For $Z(N) = d_L \dots d_1 d_0$, let $s_Z(N) := d_L + \dots + d_1 + d_0 \mod 2$. $s_Z = 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, \dots$

Then s_Z is a morphic sequence.

$$\begin{aligned} \theta_Z &:= \quad 1 \rightarrow 12, \; 2 \rightarrow 4, \; 3 \rightarrow 1, \; 4 \rightarrow 43, \\ \lambda &:= \quad 1 \rightarrow 0, \; 2 \rightarrow 1, \; 3 \rightarrow 0, \; 4 \rightarrow 1. \end{aligned}$$

x = 1244343... with $\theta_Z(x) = x$, then $\lambda(x) = s_Z$.

J.-P. Allouche and J. Shallit, Automatic Sequences (2003), Examples 7.8.2 and 7.8.4. On 6 letters.

E. Ferrand, An analogue of the Thue-Morse sequence, The Electronic Journal of Combinatorics (2007)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexity of the Zeckendorf fixed point

The Zeckendorf fixed point is the fixed point $x_Z = 12443431431...$ of the morphism $\theta_Z := 1 \rightarrow 12, 2 \rightarrow 4, 3 \rightarrow 1, 4 \rightarrow 43.$ Let p = (p(n)) be the subword complexity function of x_Z . We have p(1) = 4, p(2) = 10, p(3) = 16, p(4) = 22, p(5) = 28.

Let ff be the infinite word on the alphabet $\{6, 8\}$ given by

$$\mathit{ff} = 686688666888 \cdots = 6^{F_2} 8^{F_2} 6^{F_3} 8^{F_3} 6^{F_4} 8^{F_4} \cdots$$

Conjecture 1 p(n+5) - p(n+4) = ff(n) for n = 1, 2...

S. Brlek, Enumeration of factors in the Thue–Morse word, Discrete Appl. Math.(1989)

Complexity of Zeckendorf sum of digits mod 2

Let p = (p(n)) be the subword complexity function of s_Z . We have p(1) = 2, p(2) = 4, p(3) = 8, p(4) = 14, p(5) = 24.

Let xf be the infinite word on the alphabet $\{6, 8\}$ given by

$$xf = 6686886666888 \cdots = 6^{X_2} 8^{F_2} 6^{X_3} 8^{F_3} 6^{X_4} 8^{F_4} \cdots$$

Here
$$X_2 = 2, X_3 = 1, X_4 = 4, X_5 = 4, \cdots$$
:

 X_n is the absolute value of the Euler characteristic of the Boolean complex of the Coxeter group A_n :-)

$$X_n := F_n + (-1)^n$$

Conjecture 2 p(n+5) - p(n+4) = xf(n) for n = 1, 2...

・ロト ・西ト ・ヨト ・ヨー うへぐ

Sum of digits for base phi

For
$$\beta(N) = d_L d_{L-1} \dots d_0 \cdot d_{-1} \dots d_{R+1} d_R$$
, let
 $s_\beta(N) := d_L + \dots + d_0 + d_{-1} + \dots + d_R \mod 2.$
 $s_\beta = 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, \dots$
Then s_β is a morphic sequence.

$$\begin{aligned} \tau(1) &= 12, & \tau(2) = 312, & \tau(3) = 47, & \tau(4) = 8312, \\ \tau(5) &= 56, & \tau(6) = 756, & \tau(7) = 83, & \tau(8) = 4756. \end{aligned}$$

$$\lambda(1) &= \lambda(3) = \lambda(6) = \lambda(8) = 0, \ \lambda(2) = \lambda(4) = \lambda(5) = \lambda(7) = 1. \\ t &= 1231247123 \dots \text{ with } \tau(t) = t, \text{ then } s_{\beta} = \lambda(t). \end{aligned}$$

Pseudo randomness

Let s_2 be the Thue Morse sequence.

Michael Drmota, Christian Mauduit and Joël Rivat:

Theorem The sequence $(s_2(n^2))$ is a normal sequence.

Conjecture 3 The sequence $(s_Z(n^2))$ is a normal sequence.

Conjecture 4 The sequence $(s_{\beta}(n^2))$ is a normal sequence.

M. Drmota, C. Mauduit, and J. Rivat, Normality along squares, J. Eur. Math. Soc. (2019)

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Beatty sequences

Beatty sequence: $A(N) = \lfloor N\alpha \rfloor$ for $N \ge 1$, where α is a positive real number.

Beatty observed: if $B(N) := \lfloor N\beta \rfloor$, with

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1,$$

then (A(N)) and (B(N)) are complementary sequences.

The golden mean case: Wythoff sequences

Lower Wythoff sequence:

$$(A(N)) = (\lfloor N\varphi \rfloor) = (1, 3, 4, 6, 8, 9, 11, \dots),$$

Upper Wythoff sequence:

$$(B(N)) = (\lfloor N\varphi^2 \rfloor) = (2, 5, 7, 10, 13, 15, ...),$$

 $\frac{1}{\varphi} + \frac{1}{\varphi^2} = 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Compound Wythoff sequences

An important role is played by compositions of the two sequences A and B, also known as *compound Wythoff sequences*.

As usual, we write these compositions as words over the monoid generated by A, B. For example, the compound sequence AB is given by

$$AB(N) = A(B(N)) \quad N = 1, 2 \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalized Beatty sequences

Let α be an irrational number larger than 1. Generalized Beatty sequence V:

$$V(N) = p\lfloor N\alpha \rfloor + qN + r, \ N \ge 1.$$

p, q and r integers, the *parameters* of V.

J.-P. Allouche and F.M. Dekking, Generalized Beatty sequences and complementary triples, Moscow J. Comb. Number Th. (2019)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Generalized Beatty sequences, Part 2

Lemma Let V be a generalized Beatty sequence with parameters (p, q, r), and $\alpha = \varphi$. Then VA and VB are generalized Beatty sequences with parameters

 $(p_{VA}, q_{VA}, r_{VA}) = (p+q, p, r-p),$ $(p_{VB}, q_{VB}, r_{VB}) = (2p+q, p+q, r).$

Example The Wythoff sequence $(A(N)) = (\lfloor N\varphi \rfloor) = (1, 3, 4, 6, 8, 9, 11, 12, 14, ...),$ is a GBS with parameters (1, 0, 0). The iterated Wythoff sequence AA = (1, 4, 6, 9, 12, 14, 17, ...) is a GBS with parameters (1, 1, -1).

J.-P. Allouche and F.M. Dekking, Generalized Beatty sequences and complementary triples, Moscow J. Comb. Number Th. (2019)

Zeckendorf: technical detail

N in $\{0, \ldots, F_n - 1\}$: supplement with 0's $Z(N) \Rightarrow Z^*(N)$. For example, for n = 6, we have

Ν	Z(N)	$Z^*(N)$
1	1	00001
2	10	00 <mark>010</mark>
3	100	00100
4	101	00101
5	1000	01000
6	1001	01001
7	1010	01 <mark>010</mark>
8	10000	10000

In the following, occurrences of a word w have to be interpreted in the Z^* -sense.

Zeckendorf structure

For any natural number m fix a word $w = w_{m-1} \dots w_0$ of 0's and 1's.

We are interested in the numbers N with $Z(N) = d_L \dots d_2 d_1 d_0(N)$ such that

$$d_{m-1}\ldots d_0(N)=w_{m-1}\ldots w_0.$$

We write R_w for the sequence of occurrences of those *N*. For example, $R_{010} = (2, 7, 10, 15, 20, ...)$.

It turns out that the sequences R_w are always generalized Beatty sequences, and almost always compound Wythoff sequences, which we denote by C_w .

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Some results from the literature

In a pioneering paper by Carlitz, Scoville and Hoggatt, we find that for $m \ge 0$

$$C_{10^{2m+1}} = B^{m+1}A, \qquad C_{10^{2m}} = AB^mA,$$

$$C_{0010^{2m+1}} = B^{m+1}AA, \qquad C_{010^{2m}} = AB^mAA,$$

$$C_{1010^{2m+1}} = B^{m+1}AB, \qquad C_{1010^{2m}} = AB^mAB.$$

These are given in their Theorems 7 and 8.

L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Fibonacci representations, Fibonacci Quart. (1972).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key lemma

Lemma For any natural number m > 1 fix a word $w = w_{m-1} \dots w_0$ of 0's and 1's, with $w_{m-1} = 0$. Let C_w be the Wythoff-coding of the sequence of occurrences of the numbers N whose Z^* -expansion ends with w. Then

$$C_{0w}=C_wA,\quad C_{1w}=C_wB.$$

This would have been very useful to L. Carlitz, R. Scoville, V. E. Hoggatt, Jr.,...

Zeckendorf: main result

Theorem For any natural number m fix a word $w = w_{m-1} \dots w_0$ of 0's and 1's, containing no 11. Then—except if w = 1, or $w = 0^m$ —the sequence R_w of occurrences of numbers N such that the m lowest digits of the Zeckendorf expansion of N are equal to w, i.e., $d_{m-1} \dots d_0 = w$, is a compound Wythoff sequence C_w .

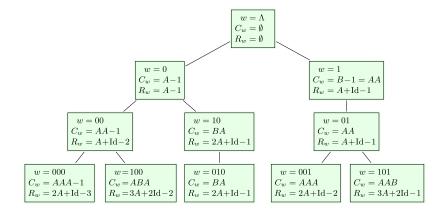
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

For all w:

 $\begin{aligned} R_w &= F_m A + F_{m-1} \mathrm{Id} + \gamma_w & \text{if } w_{m-1} = 0 \\ R_w &= F_{m+1} A + F_m \mathrm{Id} + \gamma_w & \text{if } w_{m-1} = 1 \\ \text{for some negative integer } \gamma_w. \end{aligned}$

Exceptional cases: $R_1 = B - 1$; $R_{0^m} = A^m - 1$.

Zeckendorf blocks on the Fibonacci tree



$$(p_{VA}, q_{VA}, r_{VA}) = (p + q, p, r - p),$$

 $(p_{VB}, q_{VB}, r_{VB}) = (2p + q, p + q, r).$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

What about base phi expansions?

A natural number N is written in base phi if N has the form

$$N=\sum_{i=-\infty}^{\infty}d_i\varphi^i,$$

with digits $d_i = 0$ or 1, and where $d_i d_{i+1} = 11$ is not allowed.

$$\beta(N) = d_L d_{L-1} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{R+1} d_R.$$

$$\beta(N) = \beta^+(N) \cdot \beta^-(N).$$

Treat $\beta^+(N)$ and $\beta^-(N)$ separately.

Base phi

Ν	$\beta(N)$	T(N)
1	1	C
2	$10 \cdot 01$	A
3	$100 \cdot 01$	В
4	$101 \cdot 01$	C
5	$1000 \cdot 1001$	D
6	$1010 \cdot 0001$	A
7	$10000 \cdot 0001$	В
8	$10001 \cdot 0001$	C
9	$10010 \cdot 0101$	A
10	$10100\cdot0101$	В
11	$10101 \cdot 0101$	C
12	$100000 \cdot 101001$	D
13	$100010 \cdot 001001$	A
14	$100100 \cdot 001001$	В
15	$100101 \cdot 001001$	C
16	$101000 \cdot 100001$	D
17	$101010 \cdot 000001$	A
18	$1000000 \cdot 000001$	В
19	$1000001 \cdot 000001$	C
20	$1000010 \cdot 010001$	Α

Coding:

$$\begin{split} T(N) &= A & \text{iff} \quad d_1 d_0 \cdot d_{-1}(N) = 100, \\ T(N) &= B & \text{iff} \quad d_1 d_0 \cdot d_{-1}(N) = 000, \\ T(N) &= C & \text{iff} \quad d_1 d_0 \cdot d_{-1}(N) = 010, \\ T(N) &= D & \text{iff} \quad d_1 d_0 \cdot d_{-1}(N) = 001. \end{split}$$

Lemma: $d_1 d_0 \cdot d_{-1}(N) = 101$ never occurs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A,B,C,D,...

Let γ on the alphabet $\{A, B, C, D\}$ be defined by:

$$\gamma(A) = AB, \quad \gamma(B) = C, \quad \gamma(C) = D, \quad \gamma(D) = ABC.$$

Theorem The sequence $(T(N))_{N\geq 2}$ is the unique fixed point of the morphism γ .

Observe: $\gamma(ABC) = ABCD, \gamma(D) = ABC.$

Base phi and Lucas numbers

The Lucas numbers

$$(L_n) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ...)$$
:
 $L_0 = 2, \quad L_1 = 1, \quad L_n = L_{n-1} + L_{n-2} \text{ for } n \ge 2.$
From $L_{2n} = \varphi^{2n} + \varphi^{-2n}$, and $L_{2n+1} = L_{2n} + L_{2n-1}$:
 $\beta(L_{2n}) = 10^{2n} \cdot 0^{2n-1}1, \quad \beta(L_{2n+1}) = 1(01)^n \cdot (01)^n.$

Partition the natural numbers into Lucas intervals:

$$\Lambda_{2n} := [L_{2n}, \ L_{2n+1}] \quad \text{and} \quad \Lambda_{2n+1} := [L_{2n+1}+1, \ L_{2n+2}-1].$$

Divide the interval $\Lambda_{2n+1} = [L_{2n+1} + 1, L_{2n+2} - 1]$ into three parts:

$$I_n := [L_{2n+1} + 1, L_{2n+1} + L_{2n-2} - 1],$$

$$J_n := [L_{2n+1} + L_{2n-2}, L_{2n+1} + L_{2n-1}],$$

$$K_n := [L_{2n+1} + L_{2n-1} + 1, L_{2n+2} - 1].$$

Recursive Structure Theorem

Theorem

$$\begin{array}{|c|} \hline \textbf{L} & \text{For all } n \geq 1 \text{ and } k = 1, \dots, L_{2n-1} \text{ one has} \\ \beta(L_{2n}+k) = \beta(L_{2n}) + \beta(k) = 10 \dots 0 \beta(k) 0 \dots 01. \end{array}$$

II For all $n \ge 2$ and $k = 1, \ldots, L_{2n-2} - 1$ one has

 $I_n: \quad \beta(L_{2n+1}+k) = 1000(10)^{-1}\beta(L_{2n-1}+k)(01)^{-1}1001,$

 $K_n: \beta(L_{2n+1}+L_{2n-1}+k) = 1010(10)^{-1}\beta(L_{2n-1}+k)(01)^{-1}0001.$

Moreover, for all $n \ge 2$ and $k = 0, \ldots, L_{2n-3}$

 $J_n: \quad \beta(L_{2n+1}+L_{2n-2}+k) = 10010(10)^{-1}\beta(L_{2n-2}+k)(01)^{-1}001001.$

History of the Recursive Structure Theorem

E. Hart, On Using Patterns in the Beta-Expansions To Study Fibonacci-Lucas Products, Fibonacci Quart. 36 (1998), 396–406.

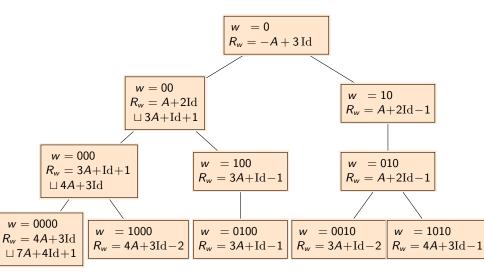
E. Hart and L. Sanchis, On the occurrence of F_n in the Zeckendorf decomposition of nF_n , Fibonacci Quart. 37 (1999), 21–33.

G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of α^i in the α -expansions of the positive integers, Fibonacci Quart. 39 (2001), 123–137.

M.D. How to add two natural numbers in base phi. To appear in Fib. Quarterly (2020).

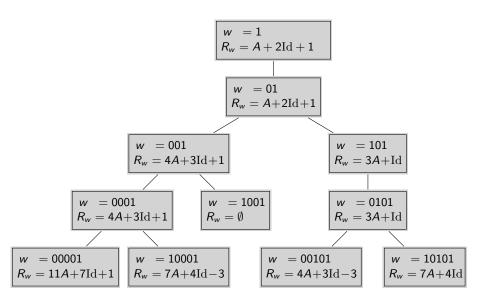
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Digit blocks $w = d_m d_{m-1} \dots d_1 0$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Digit blocks $w = d_m d_{m-1} \dots d_1 1$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The missing blocks

Theorem For any natural number m fix a word w of 0's and 1's, containing no 11. Let $w_0 = 1$. Then the sequence of occurrences of numbers N such that the digits $d_{m-1} \dots d_0$ of the base phi expansion of N are equal to w, i.e.,

$$d_{m-1}\ldots d_0(N)=w,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a generalized Beatty sequence, with exception of the words w with suffix $10^{2m}1$, for m = 2, 3, ..., which do not occur at all.

M.D., Work in progress (2020)

The end

